
Zip Trees
Robert	E.	Tarjan

Princeton	University	&	Intertrust
Technologies	

Pitea,	Sweden,	9	January	2018	

To	Don,	who	inspired	me	to	design	and	
analyze	algorithms

Observations
Over	the	last	60	years,	computer	scientists	have	
developed	many	beautiful	and	theoretically	
efficient	algorithms.

But	computer	science	is	still a	young	field.

We	have	often	settled	for	the	first	(good	
enough)	solution.

It	may	not	be	the	best	– the	design	space	is	rich.

Goal:	simplicity
Identify	the	simplest	possible	efficient	methods	
to	solve	basic	problems:
algorithms	from	“the	book”

a	la	“proofs	from	the	book”	(Erdős)
Algorithms	as	simple	as	possible,
with	provable resource	bounds

for	important	input	classes,	
and	efficient	in	practice

“Make	everything	as	simple	as	
possible,	but	not	simpler”	- Einstein

Sometimes,	simplicity	is	critical,	not	just	
desirable,	notably	in	concurrent algorithms.

Making	a	concurrent	algorithm	correct	is	
notoriously hard.		The	simpler	the	underlying	
idea,	the	greater	the	chance	of	success.

Example	of	simplicity:	!"# Trees

(image	from	Street	Art	on				
Pinterest)	

!"#$"%&'():	contains	a	set	$of	items,	each	with			
associated	information.

*+,('$"%&-:
Access(%):	Determine	if	%is	in	$.		If	so,
return	%’s information.

Insert(%):(%not	in	$)	Insert	%and	its	
information.

Delete(%):(%in	$)	Delete	%and	its	
information.

Binary	search
Universe	of	items	(or	of	access	keys	or	index	values)	
is	totally	ordered,	allowing	binary	comparison

Binary	search:	Maintain	$ in	sorted	order.
To	find	%in	$:	
If	$empty,	stop	(failure).
If	$non-empty,	compare	%to	some	item	&in	$.		
If	%=	&,	stop	(success).		
If	%<	&,	search	in	{' in	$|' <	&}.
If	%>	&,	search	in	{' in	$|	' >	&}.

Implementation:
binary	search	tree

F

M

X

P

D

B E

!"#$%&'(%)):	Each	node	%has	a	left	child	%.()*+
and	a	right	child	%.,"-.+ ,	either	or	both	of	
which	can	be	/0((.	A	node	is	1"/2,&,	0/2,&,	or	a	
()2* if	it	has	0,	1,	or	2	null	children,	
respectively.

/ =	#(non-null)	nodes
3)#+.45*4%:	length	of	path	from	root	to	%,	root	
has	depth	0	

.)"-.+45*4%:	max	length	of	a	path	from	%to	a	leaf,	
leaves	have	depth	0

Binary	search	tree

Items	(key	plus	data)	in	nodes,	one	per	node,	in	
6&77)+,"845,3),4("/95,3),):	items	in	left	subtree
are	less,	items	in	right	subtree are	greater	in	key	
order.

To	find	an	item	takes	O(3 +	1)	time,	where	3 =	depth	
of	item’s	node,	or	of	null	node	reached	by	search	
if	item	is	not	in	tree.

Binary	search	tree

F

M

X

P

D

B E

Best	case
All	leaves	have	depths	within	1:	depth	! lg/ ".

(lg:	base-two	logarithm)

Can	achieve	if	tree	is	static	(or	insertion	order	
determined	off-line)

E

MB

F I L O RD TA

G S

Q

K

C JH P U

(Leaf)	Insertion
Search.		Replace	null	by	node	with	item.
Insert	R	 F

M

X

P

D

B E

Leaf	Insertion
Search.		Replace	null	by	node	with	item.
Insert	R	 F

M

X

P

D

B E

R

Worst	case
Natural	but	bad	insertion	order:	sorted.
Insert	A,	B,	C,	D,	E,	F,	G,…

Depth	of	tree	is	/ – 1.
Worst-case	access	cost	is	/ .

=	list!

A

B

C

D

E

F

G

Ways	to	improve	efficiency

• Balance: AVL	trees	(Adelson-Velskii &	Landis	
1962),	red-black	trees	(Bayer	1972;	Guibas &	
Sedgewick	1978),	weak	AVL	trees	(Sen	&	
Tarjan 2009)…

• Self-adjustment: Splay	trees	(Sleator &	Tarjan
1983)

• Randomization:	!"# trees	

An	AVL	tree
(image	from	Wikipedia)

A	red-black	tree
(image	from	Wikipedia)

A	Splay	Tree	

(image	by	Jorge	Stolfi)

Rotation	(restructuring	primitive)

rotate	at	x																																														rotate	at	y
&

%

%

&

: ;

< :

; <

' '

right

left

20

!"# Trees

Idea:	On	insertion,	choose	a	height	for	an	item	
and	insert	it	at	the	given	height,	or	close	to	it.
Choose	heights	like	those	in	a	best-case	BST:	½		
the	nodes	at	height	0,	¼	at	height	1,	1/8	at	
height	2…

Choose	the	heights	randomly.		

We	cannot	choose	heights	exactly.

Instead,	for	each	node	to	be	inserted	we	choose	a	
rank,	as	follows:	flip	a	fair	coin	and	count	the	
number	of	heads	before	the	first	tail.		The	rank	of	a	
node	does	not	change	while	it	is	in	the	tree.

The	rank	of	a	node	has	a	geometric distribution:	a	
node	has	rank	=with	probability	1/2=+	1.

We	want	the	height	of	a	node	to	be	within	a	
constant	factor	of	its	rank.	

!"#*	Tree
A	binary	search	tree	in	which	each	node	has	a	
rank	chosen	randomly	on	insertion,	with	nodes	
symmetrically	ordered	by	key	and	heap	ordered	
by	rank,	breaking	rank	ties	in	favor	of	smaller	
key:

%>()*+>=)&<	%>=)&<	%>,"-.+>=)&
%>()*+>,2/=<	%>,2/=

%>,"-.+>,2/=≤	%>,2/=

*!"#:	“to	move	very	fast”

A	! "#Tree

F

P

X

R

D

C E

Q

Y

H

A0

1 0

0

1

21

2 3

MG0

3

11

!"# tree	insertion?

Root	insertion	(Stephenson	1980)

Let	%be	the	item	to	be	inserted.		Follow	the	
search	path	for	%,	unzipping it	by	splitting	it	into	
a	path	?4of	nodes	with	keys	less	than	that	of	%4
and	a	path	@4of	nodes	with	keys	greater	than	
that	of	%.		Make	the	top	node	of	?4the	left	child	
of	%and	the	top	node	of	@the	right	child	of	%>

F

P

X

R

D

C E

Q

Y

H

A MG

Insert	N

F

P

X

R

D

C E

Q

Y

H

A MG

Insert	N N

F

P

X

R

D

C E

Q

Y

H

A MG

Insert	N
Unzip	search	path

N

F
P

X

R

D

C E

Q

Y

H

A MG

N

!"#4tree	insertion:
hybrid	of	leaf	&	root	insertion

(Sprugnoli 1980;	Martinez	&	Roura 1998)

To	insert	%: Choose	its	rank.		Search	for	%4until	
reaching	the	node	&that	%should	replace. A/'"#
the	rest	of	the	search	path	(from	&4down)	by	
splitting	it	into	a	path	?4of	nodes	with	keys	less	
than	%B64and	a	path	@4of	nodes	with	keys	greater	
than	%B6.		Make	the	top	of	?4the	left	child	of	%
and	the	top	of	@the	right	child	of	%>4Make	%a	
child	of	the	old	parent	of	&>4

F

P

X

R

D

C E

Q

Y

H

A0

1 0

0

1

21

2 3

MG0

3

11

F

P

X

R

D

C E

Q

Y

H

A0

1 0

0

1

21

2 3

MG0

3

11

Insert	J

F

P

X

R

D

C E

Q

Y

H

A0

1 0

0

1

21

2 3

MG0

3

11

Insert	J
rank	=	2

F

P

X

R

D

C E

Q

Y

H

A0

1 0

0

1

21

2 3

MG0

3

11

Insert	J
rank	=	2
Replace	H

F

P

X

R

D

C E

Q

Y

H

A0

1 0

0

1

21

2 3

MG0

3

11

Insert	J
rank	=	2
Replace	H
Unzip	path	
from	H

F

P

X

R

D

C E

Q

Y

H

A0

1 0

0

1

21

2 3

MG0

3

1
1

Insert	J
rank	=	2
Replace	H
Unzip	path	
from	H J2

F

P

X

R

D

C E

Q

Y

H

A0

1 0

0

1

21

2 3

MG0

3

1
1

J2

A	'"#4tree
(image	from	Street	Art	on	Pinterest)

!"#4tree	deletion:
Inverse	of	insertion

Search	for	the	node	%to	be	deleted.		!"# the	
path	from	%to	its	predecessor	(in	key	order)	
with	the	path	from	%to	its	successor	(in	key	
order),	by	merging	them	in	decreasing	rank	
order,	breaking	ties	in	favor	of	smaller	key,	to	
form	a	single	path	?>44Replace	%4as	a	child	of	its	
parent	by	the	top	node	of	?>4

F

P

X

R

D

C E

Q

Y

H

A0

1 0

0

1

21

2 3

MG0

3

11

Delete	P

J2

F

P

X

R

D

C E

Q

Y

H

A0

1 0

0

1

21

2 3

MG0

3

11

Delete	P
Zip	the	paths	
from	P	to	M	
and	P	to	Q

J2

F

X

R

D

C E

Q

Y

H

A0

1 0

0

1

21

2

MG0

3

1
1

Delete	P
Zip	the	paths	
from	P	to	M	
and	P	to	Q J2

F

X

R

D

C E

Q

Y

H

A0

1 0

0

1

21

2

MG0

3

1
1

J2

Static	properties	of	'"#4trees

Expected	root	rank	:	lg/ +	O(1)
Root	rank	is	O(log/)	with	high	probability
E(node	depth)	=	1.5lg/4+	O(1)	(Prodinger 1996)
Tree	depth	is	O(log/)	with	high	probability
Tree	structure	is	uniquely	determined	by	ranks:

History-independent	data	structure

Dynamic	properties	of	'"# trees

Expected	restructuring	time	to	insert	or	delete	a	
node	of	rank	==	O(=).
Expected	restructuring	time	is	O(1)
Probability	of	restructuring	taking	O(=)	time	is	
exponentially	small	in	=
Insertion/deletion	can	be	done	purely	top-down
No	rotation	cases,	just	unzipping	and	zipping
No	swapping	on	deletion

Are	'"# trees	new?

A	'"# tree	is	a	treap (Aragon	&	Seidel	1996)	with	
a	different	way	of	choosing	ranks	and	different	
insertion/deletion	algorithms.		!"# trees	allow	
rank	ties;	treaps don’t.		
A	'"# tree	is	a	binary-tree	representation	of	a	
skip	list	(Pugh	1990)

A	treap
(image	from	Wikipedia)

A	skip	list
(image	by	Igor	Ostrovsky)

!"# Trees:	Summary

Insertions	and	deletions	are	simple	and	efficient,	
take	O(1)	expected	restructuring,	and	are	
purely	top-down

History-independent
No	restructuring	on	access
Standard	binary	tree	representation:	less	space	
than	skip	lists

O(lglg/)	balance	bits	per	node
Can	break	rank	ties	by	using	fractional	ranks,	

improves	E(depth)	by	8%
Can	modify	to	support	frequency-biased	access

Current	work

Develop,	analyze,	and	implement	efficient	non-
blocking	concurrent '"# trees

Thanks!

